Part Number Hot Search : 
PGT20306 AM79C Z5229B 141000 UPA1724 HFU1N60S 4000A B100B
Product Description
Full Text Search
 

To Download GA300TD60U Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD -50057E
GA300TD60U
"HALF-BRIDGE" IGBT DUAL INT-A-PAK
Features
* Generation 4 IGBT technology * UltraFast: Optimized for high operating frequencies 8-40 kHz in hard switching, >200 kHz in resonant mode * Very low conduction and switching losses * HEXFREDTM antiparallel diodes with ultra- soft recovery * Industry standard package * UL approved
Ultra-FastTM Speed IGBT
VCES = 600V VCE(on) typ. = 1.80V
@VGE = 15V, IC = 300A
Benefits
* Increased operating efficiency * Direct mounting to heatsink * Performance optimized for power conversion: UPS, SMPS, Welding * Lower EMI, requires less snubbing
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25C ICM ILM IFM VGE VISOL PD @ TC = 25C PD @ TC = 85C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Pulsed Collector Current* Peak Switching Current Peak Diode Forward Current Gate-to-Emitter Voltage RMS Isolation Voltage, Any Terminal To Case, t = 1 min Maximum Power Dissipation Maximum Power Dissipation Operating Junction Temperature Range Storage Temperature Range
Max.
600 300 600 600 600 20 2500 880 460 -40 to +150 -40 to +125
Units
V A
V W C
Thermal / Mechanical Characteristics
Parameter
RJC RJC RCS Thermal Resistance, Junction-to-Case - IGBT Thermal Resistance, Junction-to-Case - Diode Thermal Resistance, Case-to-Sink - Module Mounting Torque, Case-to-Heatsink S Mounting Torque, Case-to-Terminal 1, 2 & 3S Weight of Module
Typ.
-- -- 0.1 -- -- 400
Max.
0.14 0.20 -- 6.0 5.0 --
Units
C/W N. m g
www.irf.com
1
05/14/02
GA300TD60U
Electrical Characteristics @ TJ = 25C (unless otherwise specified)
V(BR)CES VCE(on) VGE(th) VGE(th)/TJ gfe ICES VFM IGES Parameter Collector-to-Emitter Breakdown Voltage Collector-to-Emitter Voltage Min. Typ. Max. Units Conditions 600 -- -- VGE = 0V, IC = 1mA -- 1.8 2.3 VGE = 15V, IC = 300A -- 1.9 -- V VGE = 15V, IC = 300A, TJ = 125C Gate Threshold Voltage 3.0 -- 6.0 IC = 1.75mA Temperature Coeff. of Threshold Voltage -- -11 -- mV/C VCE = VGE, IC = 1.75mA Forward Transconductance -- 269 -- S VCE = 25V, I C = 300A Collector-to-Emitter Leaking Current -- -- 1.0 mA VGE = 0V, VCE = 600V -- -- 10 VGE = 0V, VCE = 600V, TJ = 125C Diode Forward Voltage - Maximum -- 3.3 -- V IF = 300A, VGE = 0V -- 3.2 -- IF = 300A, VGE = 0V, TJ = 125C Gate-to-Emitter Leakage Current -- -- 400 nA VGE = 20V
Dynamic Characteristics - TJ = 125C (unless otherwise specified)
Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets Cies Coes Cres trr Irr Qrr di(rec)M/dt Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Energy Turn-Off Switching Energy Total Switching Energy Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Diode Peak ReverseCurrent Diode Recovery Charge Diode Peak Rate of Fall of Recovery During tb Min. -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Typ. 1249 173 423 645 282 418 220 22 25 47 27755 1735 361 200 128 12771 1691 Max. Units Conditions 1873 VCC = 400V 260 nC IC = 187A 635 TJ = 25C -- RG1 = 27, RG2 = 0, -- ns IC = 300A -- VCC = 360V -- VGE = 15V -- mJ See Fig.17 through Fig.19 -- 60 -- VGE = 0V -- pF VCC = 30V -- = 1 MHz -- ns IC = 300A -- A RG1 = 27 -- nC RG2 = 0 -- A/s VCC = 360V di/dt =1300A/s
2
www.irf.com
GA300TD60U
200
For both:
160
LOAD CURRENT (A)
D uty cy cle: 50% TJ = 125C T s ink = 90C G ate drive as specified
P ow e r Dis sip ation = 150 W
120
S q u a re w a v e : 60 % of ra ted vo ltag e
80
I
40
Id e a l d io d e s
0 0.1 1 10 100
f, Frequency (KHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
1000
1000
I C , Collector-to-Emitter Current (A)
I C , Collector-to-Emitter Current (A)
T = 125 C J
TJ = 125 C
100
100
TJ = 25 C
TJ = 25 C
10 0.5
V = 15V 80s PULSE WIDTH
GE 1.0 1.5 2.0 2.5 3.0
10 5.0
V = 25V 80s PULSE WIDTH
CE 6.0 7.0 8.0 9.0
VCE , Collector-to-Emitter Voltage (V)
VGE , Gate-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
www.irf.com
3
GA300TD60U
400 3.0
VCE , Collector-to-Emitter Voltage(V)
V = 15V 80 us PULSE WIDTH
GE
Maximum DC Collector Current(A)
IC = 600 A
300
200
2.0
IC = 300 A IC = 150 A
100
0 25 50 75 100 125 150
1.0 -60 -40 -20
0
20
40
60
80 100 120 140 160
TC , Case Temperature ( C)
TJ , Junction Temperature ( C)
Fig. 4 - Maximum Collector Current vs. Case Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature
1
Th e rm a l Im p e d a n ce - Z
th J C
0.1
D = 0.5 0 0 .2 0 0 .1 0 0.0 5 0 .0 2 0.0 1
0.001
Notes: 1. Duty factor D = t 1 /t
P DM
t1 t2
S in g le P u ls e (Th e r m a l R e sista n c e )
0.01 0.1 1
2
2. Peak TJ = PDM x Z thJC + TC
0.01 0.0001
10
100
1000
t 1 , R e cta n g u la r Pu lse D u ra tio n (S e co n ds )
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
GA300TD60U
50000
VGE , Gate-to-Emitter Voltage (V)
40000
VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc
20
VCC = 400V I C = 187A
16
C, Capacitance (pF)
Cies
30000
12
20000
8
C oes
10000
C res
4
0 1 10 100
0 0 200 400 600 800 1000 1200 1400
VCE , Collector-to-Emitter Voltage (V)
Q G , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage
70
Total Switching Losses (mJ)
60
Total Switching Losses (mJ)
VCC = 360V VGE = 15V 125C TJ = 125 C I C = 300A
1000
RG1=27;R G2 = 0 G = Ohm VGE = 15V VCC = 360V
50
100
IC = 600 A IC = 300 A IC = 150 A
40
30 0 10 20 30 40 50
RRG ,, Gate Resistance ( (Ohm) G Gate Resistance )
10 -60 -40 -20
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( C )
Fig. 9 - Typical Switching Losses vs. Gate Resistance
Fig. 10 - Typical Switching Losses vs. Junction Temperature
www.irf.com
5
GA300TD60U
120
IC , Collector-to-Emitter Current ( A )
Total Switching Losses (mJ)
RG =27;RG2 = 0 G1 = Ohm T J = 125 C VCC = 360V 100 VGE = 15V
80
800
V G E = 20V T J = 125C
VCE measured at terminal (Peak Voltage)
600
SAFE OPERATING AREA
400
60
40
200
20
0 0 100 200 300 400 500 600
0 0 200 400 600
A
800
I C , Collector-to-emitter Current (A)
VCE , Collector-to-Emitter V oltage (V)
Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current
1000
Fig. 12 - Reverse Bias SOA
25000
I F = 6 00 A
In s ta n ta n e o u s F o rwa rd C u rre n t - I F (A )
20000
I F = 30 0A I F = 15 0A
TJ = 125C TJ = 25C
100
- (nC ) Q
RR
15000
10000
5000
10 1.0 2.0 3.0 4.0 5.0
VR = 36 0 V TJ = 12 5 C TJ = 25 C
0 500 1000 1500 2000
F o rwa rd V o lta g e D ro p - V FM (V )
d i f /dt - (A /s)
Fig. 13 - Typical Forward Voltage Drop vs. Instantaneous Forward Current
Fig. 14 - Typical Stored Charge vs. dif/dt
6
www.irf.com
GA300TD60U
300 250
VR = 36 0 V TJ = 12 5 C TJ = 25 C
I F = 60 0A I F = 3 00 A I F = 15 0 A
200
I F = 60 0A I F = 30 0A I F = 1 5 0A
250
I IR R M - (A )
t rr - (ns)
150
200
100
150 50
100 500
VR = 3 6 0 V T J = 1 2 5 C TJ = 2 5 C
1000 1500 2000 0 500 1000 1500 2000
d i f /d t - (A / s)
d i f /d t - (A / s )
Fig. 15 - Typical Reverse Recovery vs. dif/dt
Fig. 16 - Typical Recovery Current vs. dif/dt
www.irf.com
7
GA300TD60U
90% Vge +Vge
Vce
Ic
10% Vce Ic
9 0 % Ic 5 % Ic
td (o ff)
tf
Eoff =
Vce Ic dt
t1 + 5 S V c e ic d t t1
Fig. 17a - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t1 t2
Fig. 17b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
G A T E V O L T A G E D .U .T . 1 0 % +V g +Vg
trr Ic
Q rr =
trr id ddt Ic t tx
tx 10% Vcc Vce Vcc 1 0 % Ic 9 0 % Ic D UT VO LTAG E AN D CU RRE NT Ip k Ic
1 0 % Irr V cc
V pk Irr
D IO D E R E C O V E R Y W A V E FO R M S td (o n ) tr 5% Vce t2 Vce d E o n = V ce ieIc t dt t1 t2 D IO D E R E V E R S E REC OVERY ENER GY t3 t4
E re c =
t4 V d idIc t dt Vd d t3
t1
Fig. 17c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
Fig. 17d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
8
www.irf.com
GA300TD60U
V g G A T E S IG N A L D E V IC E U N D E R T E S T C U R R E N T D .U .T .
V O L T A G E IN D .U .T .
C U R R E N T IN D 1
t0
t1
t2
Figure 17e. Macro Waveforms for Figure 17a's Test Circuit
L 1000V 50V 6000 F 100 V Vc*
D.U.T.
RL= 0 - 480V
480V 4 X IC @25C
Figure 18. Clamped Inductive Load Test Circuit
Figure 19. Pulsed Collector Current Test Circuit
www.irf.com
9
GA300TD60U
Notes:
Q Repetitive rating; VGE = 20V, pulse width limited by
max. junction temperature.
R See fig. 17 S For screws M6. T Pulse width 80s; single shot.
Case Outline -- DUAL INT-A-PAK
107.30 106.30 3X M6 8 [.314] MAX. 4.185] [4.224 93.30 3.673 92.70 [3.650] 28.60 2X 27.40 1.079] [1.126 4X 6.60 5.40 11 10 48.30 47.70 6 7 1 2 3 5 4 2X 15.59 14.39 .567] [.614 4X FAS T ON TAB (110) 2.8 x 0.5 [.110 x .020] 48.50 47.50 1.870] [1.909 8.00 6.60 .260] [.315 31.00 29.60 5.50 4.50 1.165] [1.220 .213] [.260 NOT ES: 1. ALL DIMENS IONS ARE SHOWN IN MILLIMET ERS [INCHES ]. 2. CONT ROLLING DIMENS ION: MILLIMETER.
[
1.902 1.878] 8 9
6.80 4X O 6.20
[
.267 .244]
[
.217 .177]
24.00 23.00
.906] [.945 2.303] [2.343 62.70 2.468 61.70 [2.429] 59.50 58.50
0.15 [.0059] CONVEX 104.50 103.50 4.075] [4.114
Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.05/02
10
www.irf.com


▲Up To Search▲   

 
Price & Availability of GA300TD60U

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X